Webové stránky používají k poskytování služeb, personalizaci reklam a analýze návštěvnosti soubory cookie. Informace, jak tyto stránky používáte, jsou sdíleny se společností Google. Používáním souhlasíte s použitím souborů cookie. Více informací.

Rozumím

Kód školení: MLBC

Machine Learning BootCamp

Jedná se o týdenní intenzivní sérii všech našich kurzů za zvýhodněnou cenu. Nejsou třeba žádné předchozí znalosti strojového učení. Balíček obsahuje:

  • Úvod do strojového učení (2 dny)
  • Zpracování přirozeného jazyka (1 den)
  • Konvoluční neuronové sítě a zpracování obrazu (1 den)
  • Časové řady (1 den)

Obsah školení

Day 1

  • What is machine learning?
  • Types of machine learning (classification, regression, ranking, reinforcement learning,
  • clustering, anomaly detection, recommendation, optimization)
  • Data preparation (train, test and validation data sets, imbalanced and noisy data)
  • Classification model evaluation (accuracy, precision, recall, confusion matrix, ROC, AUC)
  • Basic algorithms for classification (baseline models, Na.ve Bayes Classifier, Logistic regression, Support Vector Machines, decision trees, ensemble models)
  • Quick Scikit-Learn tutorial (how to load and transform data, training models, predicting values, model pipelines and evaluation)
  • Practical classification task
  • Basic algorithms for regression (analytical methods, gradient descent, SVR, regression trees)

Day 2

  • Basic algorithms for clustering (K-means, hierarchical clustering)
  • Practical clustering task
  • Introduction to artificial neural networks (why they are so popular, what their advantages and disadvantages are, perceptron neural network)
  • Most frequently used activation functions (Sigmoid, Linear, Tanh, Relu, Softmax)
  • Multi-Layer neural networks (back propagation algorithm, stochastic gradient descent, convolution, pooling, regularizations)
  • Quick tutorial to Keras (sequential models, optimizers, training, data workflow)
  • Practical classification and regression tasks using neural networks

Day 3.- Natural Language Processing

  • Introduction to natural language processing
  • Chapters from computational linguistics (corpus, tokenization, morphological, syntactic and semantic analysis, entropy, perplexity)
  • Text document vectorization (bag of words, one-hot encoding, TF-IDF)
  • Practical taks on text classification
  • Word embedding (word2vec, GloVe)
  • Introduction to language modelling (n-gram models, smoothing, neural network based language models)
  • Practical task on language modelling (implementation of a language detection algorithm based on language models)
  • Neural network based text generator

Day 4. - Convolutional neural networks and image processing

  • Back to the history
  • What the convolution is and why it works
  • TensorFlow (designing a simple convolutional neural network)
  • Practical classification task with the Fashion MNIST data set.
  • Experiments with the MSCOCO and ResNet data sets
  • Visualisations using TensorBoards
  • Image classification
  • How to deal with noisy data?

Day 5. - Time Series Analysis

  • Introduction to the theory of time series modeling
  • Classical methods for time series prediction (space & frequency domain, spectral analysis, autocorrelation, ARIMA models etc.)
  • Hands-on example (pandas, basic characteristics, simple prediction)
  • Machine learning for time series prediction (state-space methods, Hidden Markov Chain, Kalman filter, classical neural networks, recurrent networks, LSTM)
  • Hands-on examples of machine learning methods (training set preparation for specific task and model, training process & evaluation)
  • Complex example of time series prediction using recurrent neural network (temperature prediction from high-dimensional input data: training data set preparation, training process & validation, prediction with trained neural network)

Předpokládané znalosti

  • Základní znalost programování v Pythonu
  • Středoškolské znalosti lineární algebry, matematické analýzy a teorie pravděpodobnosti. Bude předpokládáno základní porozumění pojmům jako vektor, matice, vektorový prostor, pravděpodobnost, podmíněná pravděpodobnost, nezávislost náhodných jevů a znalost násobení matic a derivace funkcí.
  • Vlastní laptop s předinstalovaným Dockerem.

Cena školení

17.990,- Kč bez DPH
21.768,- Kč s DPH

Termíny školení

Datum Garantovaný Lokalita Jazyk kurzu Délka kurzu
17. června 2019 (Garantovaný) Praha Čeština 5 dní Registrovat
21. října 2019 - Praha Čeština 5 dní Registrovat

Virtuální kurz

Datum Jazyk kurzu Délka kurzu
Virtuální kurz Angličtina 5 dní Registrovat

Alternativní termín

Nevyhovuje vám žádný z navrhovaných termínů? Napište nám o vypsání alternativního termínu.

Kontaktujte nás