Time Series Modeling Essentials

Kód kurzu: STSM51

This course discusses the fundamentals of modeling time series data. The course focuses on the applied use of the three main model types used to analyze univariate time series: exponential smoothing, autoregressive integrated moving average with exogenous variables (ARIMAX), and unobserved components (UCM).

The e-learning format of this course includes Virtual Lab time to practice.

Odborní
certifikovaní lektoři

Mezinárodně
uznávané certifikace

Široká nabídka technických
a soft skills kurzů

Skvělý zákaznický
servis

Přizpůsobení kurzů
přesně na míru

Termíny kurzu

Počáteční datum: Na vyžádání

Forma: E-learning

Délka kurzu: 21 hodin

Jazyk: en

Cena bez DPH: 18 000 Kč

Registrovat

Počáteční datum: Na vyžádání

Forma: Na vyžádání

Délka kurzu: 14 hodin

Jazyk: en

Cena bez DPH: 30 000 Kč

Registrovat

Počáteční
datum
Místo
konání
Forma Délka
kurzu
Jazyk Cena bez DPH
Na vyžádání E-learning 21 hodin en 18 000 Kč Registrovat
Na vyžádání Na vyžádání 14 hodin en 30 000 Kč Registrovat
G Garantovaný kurz

Nenašli jste vhodný termín?

Napište nám o vypsání alternativního termínu na míru.

Kontakt

Cílová skupina

Analysts with a quantitative background as well as non-statistical analysts and domain experts who would like to augment their time series modeling proficiency

Struktura kurzu

Introduction to Time Series

  • Defining a time series.
  • Using the TIMESERIES procedure to transform transactional data into time series data.
  • Defining and exploring the systematic components in a time series.
  • Describing the decomposition of time series variation.
  • Listing three families of time series models.
  • Introducing SAS Studio.
  • Introducing the concepts of white noise and autocorrelation.

Exponential Smoothing Models

  • Exploring weighted average models and exponential smoothing.
  • Comparing and contrasting simple mean, random walk, and exponential smoothing models.
  • Imputing missing values within a time series.

ARIMAX Models

  • Differentiating between ARMA and ARIMA models.
  • Defining a stationary time series and identifying its importance.
  • Describing and identifying autoregressive and moving average processes.
  • Defining the differences between a random walk series, a white noise series, and an autoregressive (AR) series.
  • Estimating autoregressive parameters .
  • ARMAX and time series regression.
  • Accuracy and forecasting of ARIMAX.

Unobserved Components Models

  • Introducing unobserved components models (UCM) and focus on the multiple sources of error and parameters as a function of time.
  • Describing the basic component models: level, slope, seasonal.
  • Exploring the UCM model parameters.
  • Running a UCM model using the UCM procedure.
  • Defining Random Walk and Linear Trend series.
  • Building a UCM model.

Prerekvizity

Before attending this course, you should have an understanding of basic statistical concepts. You can gain this experience by completing the Statistics 1: Introduction to ANOVA, Regression, and Logistic Regression course.

Potřebujete poradit nebo upravit kurz na míru?

onas

produktová podpora

Platební brána ComGate Logo MasterCard Logo Visa