The Fundamentals of Automotive All-Wheel Drive System

Kód kurzu: PD730556

This on-demand course provides an introduction to the fundamental concepts and evolution of passenger car and light truck 4×4/all-wheel drive (AWD) systems, including the nomenclature utilized to describe these systems. It covers basic power transfer unit and transfer case design parameters, component application to system function, the future of AWD systems, and emerging technologies that may enable future systems.

Based on the popular classroom seminar, this eight-module course includes the instructor’s insights and industry experience, including answers to participant questions. To engage the learner and ensure that the objectives are met, interactions, knowledge checks, and summaries have been added. A downloadable course handbook is also included.


By participating in this on-demand course, you’ll be able to:

  • Identify front wheel drive and rear wheel drive vehicle architectures
  • Identify part time, full time, and on demand all-wheel drive systems
  • Explain the benefits of all-wheel drive over two-wheel drive
  • Quantify all-wheel drive traction and mobility benefits
  • Describe auxiliary axle disconnect systems
  • Explain basic vehicle dynamics performance and the effect of AWD on performance
  • Identify couplers vs. biasing devices and their basic function
  • Describe the differences between mechanical and electrical implementation in AWD systems
  • Describe basic control strategies and logic
  • Discuss advanced propulsion concepts and systems

certifikovaní lektoři

uznávané certifikace

Široká nabídka technických
a soft skills kurzů

Skvělý zákaznický

Přizpůsobení kurzů
přesně na míru

Termíny kurzu

Počáteční datum: Na vyžádání

Forma: TOD

Délka kurzu: 90 dnů

Jazyk: en

Cena bez DPH: 10 000 Kč


Forma Délka
Jazyk Cena bez DPH
Na vyžádání TOD 90 dnů en 10 000 Kč Registrovat
G Garantovaný kurz

Nenašli jste vhodný termín?

Napište nám o vypsání alternativního termínu na míru.


Struktura kurzu

Module I: All-Wheel Drive Systems Overview
[Total Run Time: 70 minutes]

  • Explain the differences between understeer, oversteer, and neutral steer vehicle dynamics behavior
  • Compare and contrast front-wheel drive-based versus rear-wheel drive-based powertrain architectures
  • Discuss the history of all-wheel drive systems
  • Identify the need for differentials in a vehicle
  • Calculate percent grade and understand its importance
  • Front wheel drive and rear wheel drive vehicle architectures

Module II: Part-Time Systems
[Total Run Time: 40 minutes]

  • Explain the powerflow of a transfer case in all part-time modes
  • Articulate the need and benefit of auxiliary axle disconnects
  • Describe the history and evolution of disconnect systems

Module III: Full-Time Systems
[Total Run Time: 25 minutes]

  • Explain the powerflow of a full-time transfer case
  • Explain the powerflow of an on-demand transfer case
  • Identify the difference between a transfer case and power transfer unit

Module IV: Transfer Case Design
[Total Run Time: 34 minutes]

  • Identify typical transfer case design parameters
  • Recognize the operation of chain drive systems
  • Explain the need for lubrication pumps
  • Identify the components and function of manual versus electric shift systems
  • Assess the powerflow of low range
  • Compare the differences between a „simple“ and „complex“ power transfer unit

Module V: Couplers
[Total Run Time: 1 hour, 20 minutes]

  • Name the difference between a coupler and a torque biasing device
  • Explain the operating differences between active and passive systems
  • Articulate the function difference between speed sensing and torque sensing devices
  • Discuss the many different actuation types and methods in use today
  • Explain the influence on vehicle dynamics behavior of different devices and implementations
  • Compare and contrast the performance of different devices in many different vehicle situations

Module VI: Noise, Vibration, and Harshness
[Total Run Time: 10 minutes]

  • List the elements that cause noise, vibration, and harshness
  • Analyze system ratio and its effect on overall design considerations
  • Predict chassis interaction to all-wheel drive system implementation

Module VII: Emerging Technologies
[Total Run Time: 11 minutes]

  • Explain the basic function of a twin coupling approach
  • List performance benefits achievable with independent wheel control
  • Discuss the history and current status of torque vectoring systems
  • Identify some current implementation methods of electrified all-wheel drive

Module VIII: All-Wheel Drive Interactions/New Developments
[Total Run Time: 11 minutes]

  • Explain torque split ratio and its influence on vehicle behavior
  • Describe the tire friction circle and its relationship to lateral and longitudinal acceleration
  • Discuss the history and function of ER and MR fluids
Materials Provided
  • 90 days of online single-user access (from date of purchase) to the six hour presentation
  • Eight video modules (see Topics/Outline tab)
  • Integrated knowledge checks to reinforce key concepts
  • Course handbook (downloadable, .pdf’s)
  • Online learning assessment (a passing score of 70% or higher is required))
  • Follow-up to your content questions
  • 0.6 CEUs*/Certificate of Achievement (upon completion of all course content and a score of 70% or higher on the learning assessment)

*SAE International is authorized by IACET to offer CEUs for this course.

Předpokládané znalosti

This course is designed for engineers (working with passenger cars, light trucks, and SUVs) who need to master AWD componentry, and the function and effect of those components. Engineers new to the 4WD/AWD field, as well as managers, marketing personnel, purchasing professionals and others interested in all-wheel drive fundamentals will benefit from this seminar.

Potřebujete poradit nebo upravit kurz na míru?


produktová podpora

Platební brána ComGate Logo MasterCard Logo Visa