Statistics You Need to Know for Machine Learning

Kód kurzu: VST141

When it comes to using data, there are two main camps, traditional statistics and machine learning, and the two camps complement each other. Statistics remains highly relevant, irrespective of the „bigness“ of data. Its role remains what it has always been, but it is even more important now. There is a need to transition from traditional statistical modeling to the machine learning world. This course introduces the statistical background necessary for machine learning using SAS Viya. Knowledge of statistics relevant to machine learning will prepare you to become a data scientist. The course prepares you for future instruction on doing machine learning (including its underlying methodology that has statistical foundations) and enables you to develop a deeper understanding of machine learning models.

This course is a prerequisite to many of the courses in the data science curriculum. A more advanced treatment of machine learning occurs in the courses Machine Learning Using SAS Viya, Interactive Machine Learning in SAS Viya, SAS Visual Statistics in SAS Viya: Interactive Model Building, and Supervised Machine Learning Procedures Using SAS Viya in SAS Studio.

For students interested in statistics for inference and explanatory analysis used in scientific and medical research, Statistics 1: Introduction to ANOVA, Regression, and Logistic Regression is an appropriate foundational course.

39 000 Kč

47 190 Kč s DPH

Nejbližší termín od 26.08.2025

Výběr termínů

Odborní
certifikovaní lektoři

Mezinárodně
uznávané certifikace

Široká nabídka technických
a soft skills kurzů

Skvělý zákaznický
servis

Přizpůsobení kurzů
přesně na míru

Termíny kurzu

Počáteční datum: 26.08.2025

Forma: Virtuální

Délka kurzu: 3 dny

Jazyk: en

Cena bez DPH: 39 000 Kč

Registrovat

Počáteční datum: 10.11.2025

Forma: Virtuální

Délka kurzu: 3 dny

Jazyk: en

Cena bez DPH: 39 000 Kč

Registrovat

Počáteční datum: Na vyžádání

Forma: Prezenční/Virtuální

Délka kurzu: 3 dny

Jazyk: en/cz

Cena bez DPH: 39 000 Kč

Registrovat

Počáteční
datum
Místo
konání
Forma Délka
kurzu
Jazyk Cena bez DPH
26.08.2025 Virtuální 3 dny en 39 000 Kč Registrovat
10.11.2025 Virtuální 3 dny en 39 000 Kč Registrovat
Na vyžádání Prezenční/Virtuální 3 dny en/cz 39 000 Kč Registrovat
G Garantovaný kurz

Nenašli jste vhodný termín?

Napište nám o vypsání alternativního termínu na míru.

Kontakt

Popis kurzu

Learn How To
  • Explain the relevance of statistics in big data and machine learning.
  • Relate statistical and data science terminology.
  • Generate descriptive statistics and explore data with graphs.
  • Detect associations among variables.
  • Perform linear regression for explanatory modeling.
  • Compare explanatory modeling with predictive modeling.
  • Describe the trade-off between bias and variance.
  • Fit a logistic regression model for predictive modeling.
  • Score new data.
  • Explain the statistical foundations of machine learning.
  • Discuss data difficulties and modeling issues and their statistical solutions.

Cílová skupina

Anyone in the field of data science who does not yet have a deep understanding of statistical and machine learning concepts or wants to enhance their knowledge, which might include business analysts, data analysts, marketing analysts, marketing managers, data scientists, data engineers, financial analysts, data miners, statisticians, mathematicians, and others who work in allied areas

Struktura kurzu

Statistics and Machine Learning

  • Relevance of statistics in big data and machine learning.
  • Terminology and vocabulary.
  • Introduction to SAS Viya and SAS Studio.

Fundamental Statistical Concepts

  • Introduction to statistical analysis.
  • Descriptive statistics.
  • Inferential statistics.

Explanatory Modeling Using Linear Regression

  • Correlation and simple linear regression.
  • Multiple regression and model selection.
  • Model diagnostics.

Predictive Modeling Using Logistic Regression

  • Introduction to predictive modeling.
  • Categorical associations.
  • Logistic regression model.
  • Model deployment.

Statistical Foundations of Machine Learning

  • Overview of machine learning.
  • Data pre-processing for machine learning models.
  • Model evaluation, estimation, and post-training tasks.

Předpokládané znalosti

Before attending this course, you should have experience using computer software. It is beneficial if you have completed the equivalent of an undergraduate course in statistics covering distribution of data, p-values, hypothesis testing, and regression. No prior SAS experience is needed.

Potřebujete poradit nebo upravit kurz na míru?

onas

produktová podpora

Platební brána ComGate Logo MasterCard Logo Visa