Probabilistic Graphical Models

Kód kurzu: PROBMACLNR

Tento kurz je určen pro zájemce o porozumění Bayesovským sítím a pravděpodobnostnímu programování. Teoretická příprava v první části kurzu bude směřovat k praktickému příkladu modelování témat pomocí Latent Dirichlet Allocation a jejímu neparametrickému rozšíření včetně odhadu hyperparametrů. Po absolvování kurzu bude účastník schopen navrhovat a implementovat vlastní jednoduché Bayesovské sítě pro různé problémy.

4 990 Kč

6 038 Kč s DPH

Nejbližší termín od 24.10.2022

Výběr termínů

Odborní
certifikovaní lektoři

Mezinárodně
uznávané certifikace

Široká nabídka technických
a soft skills kurzů

Skvělý zákaznický
servis

Přizpůsobení kurzů
přesně na míru

Termíny kurzu

Počáteční datum: 24.10.2022

Garantovaný

Forma: Individuální

Délka kurzu: 1 den

Jazyk: cz

Cena bez DPH: 4 990 Kč

Registrovat

Počáteční datum: Individuální

Forma: Individuální

Délka kurzu: 1 den

Jazyk: cz

Cena bez DPH: 4 990 Kč

Registrovat

Počáteční
datum
Místo
konání
Forma Délka
kurzu
Jazyk Cena bez DPH
G 24.10.2022 Individuální 1 den cz 4 990 Kč Registrovat
Individuální Individuální 1 den cz 4 990 Kč Registrovat
G Garantovaný kurz

Nenašli jste vhodný termín?

Napište nám o vypsání alternativního termínu na míru.

Kontakt

Struktura kurzu

  • Bayesovské sítě
  • Grafická reprezentace modelu
  • Generativní vs. diskriminativní modely
  • Statistická inference v Bayesovských sítích
    • Variational inference
    • Sampling
      • Rejection sampling
      • Markov Chain Monte Carlo
      • Metropolis-Hastings sampling
      • Gibbs sampling
  • Pravděpodobnostní rozdělení
    • Binomické a multinomické rozdělení
    • Beta a Dirichletovo rozdělení
    • Gamma rozdělení
  • Pravděpodobnostní programovací jazyky
  • Praktický příklad na modelování témat
    • Latent Semantic Analysis
    • Probabilistic Latent Semantic Analysis
    • Latent Dirichlet Allocation
  • Neparametrické modely
    • Dirichlet process
    • Chinese restaurant process a Stick breaking process
    • Non-parametric LDA
  • Odhad hyperparametrů

Předpokládané znalosti

  • Základní znalost programování v Pythonu
  • Středoškolské znalosti lineární algebry, matematické analýzy a teorie pravděpodobnosti. Bude předpokládáno základní porozumění pojmům jako vektor, matice, vektorový prostor, pravděpodobnost, podmíněná pravděpodobnost, nezávislost náhodných jevů a znalost násobení matic a derivace funkcí.

Potřebujete poradit nebo upravit kurz na míru?

Daniel Šťastný

Daniel Šťastný

produktová podpora

Platební brána ComGate Logo MasterCard Logo Visa