Neural Network Modeling

Kód kurzu: DMNN5

Tato část není lokalizována

This course helps you understand and apply two popular artificial neural network algorithms: multi-layer perceptrons and radial basis functions. Both the theoretical and practical issues of fitting neural networks are covered. Specifically, this course teaches you how to choose an appropriate neural network architecture, how to determine the relevant training method, how to implement neural network models in a distributed computing environment, and how to construct custom neural networks using the NEURAL procedure.

The e-learning format of this course includes Virtual Lab time to practice.

Odborní
certifikovaní lektoři

Mezinárodně
uznávané certifikace

Široká nabídka technických
a soft skills kurzů

Skvělý zákaznický
servis

Přizpůsobení kurzů
přesně na míru

Termíny kurzu

Počáteční datum: Na vyžádání

Forma: E-learning

Délka kurzu: 14 hodin

Jazyk: en

Cena bez DPH: 18 000 Kč

Registrovat

Počáteční datum: Na vyžádání

Forma: Na vyžádání

Délka kurzu: 14 hodin

Jazyk: en

Cena bez DPH: 30 000 Kč

Registrovat

Počáteční
datum
Místo
konání
Forma Délka
kurzu
Jazyk Cena bez DPH
Na vyžádání E-learning 14 hodin en 18 000 Kč Registrovat
Na vyžádání Na vyžádání 14 hodin en 30 000 Kč Registrovat
G Garantovaný kurz

Nenašli jste vhodný termín?

Napište nám o vypsání alternativního termínu na míru.

Kontakt

Cílová skupina

Tato část není lokalizována

Data analysts and modelers with a strong mathematical background

Struktura kurzu

Tato část není lokalizována

Introduction to Neural Networks

  • Provide a brief history of neural networks.
  • Describe key concepts underlying neural networks.
  • Illustrate traditional approaches to nonlinear modeling.

Network Architecture

  • Define the linear perceptron neural network.
  • Describe combination and activation functions.
  • Show how a linear perceptron is a generalized linear model that is able to model many target distributions.
  • Detail multilayer and skip-layer perceptrons.
  • Detail ordinary and normalized radial basis functions.

Learning

  • Describe the problem of local minima.
  • Describe the parameter estimation methods.
  • Outline the optimization (training) techniques that are available in the Neural Network node.

NEURAL Procedure

  • Overview of PROC NEURAL.
  • Input selection using PROC NEURAL.
  • Define sequential network construction (SNC).
  • Illustrate the SNC paradigm.
  • Stochastic gradient descent.

Augmented Networks

  • Implementing a time delay neural network.
  • Interpreting a neural network with a continuous target.
  • Interpreting a neural network with a categorical target.

HP Neural Node

  • Outline the challenge of big data.
  • Introduce SAS High-Performance Analytics.
  • Describe the HP Neural node's interface.

PROC DMDB and PROC NEURAL User’s Guide

  • DMDB procedure.
  • NEURAL procedure.

Empirical Partial Residuals

  • Generating empirical partial residual plots to guide variable selection.

Předpokládané znalosti

Tato část není lokalizována

Before attending this course, you should:
  • Have an understanding of basic statistical concepts, which you can gain from the Statistics 1: Introduction to ANOVA, Regression, and Logistic Regression course.
  • Have completed the SAS Programming 1: Essentials course or have equivalent knowledge.
  • Be familiar with SAS Enterprise Miner software. You can gain this knowledge from the Applied Analytics Using SAS Enterprise Miner course.
  • Have completed a college-level calculus course.
  • Potřebujete poradit nebo upravit kurz na míru?

    onas

    produktová podpora

    Platební brána ComGate Logo MasterCard Logo Visa