Multilevel Modeling of Hierarchical and Longitudinal Data Using SAS(R)

Kód kurzu: BHLM42

Tato část není lokalizována

This course teaches how to identify complex and dynamic patterns within multilevel data to inform a variety of decision-making needs. The course provides a conceptual understanding of multilevel linear models (MLM) and multilevel generalized linear models (MGLM) and their appropriate use in a variety of settings.

The self-study e-learning includes:

  • Annotatable course notes in PDF format.
  • Virtual lab time to practice.

Odborní
certifikovaní lektoři

Mezinárodně
uznávané certifikace

Široká nabídka technických
a soft skills kurzů

Skvělý zákaznický
servis

Přizpůsobení kurzů
přesně na míru

Termíny kurzu

Počáteční datum: Na vyžádání

Forma: E-learning

Délka kurzu: 21 hodin

Jazyk: en

Cena bez DPH: 18 000 Kč

Registrovat

Počáteční datum: Na vyžádání

Forma: Na vyžádání

Délka kurzu: 14 hodin

Jazyk: en

Cena bez DPH: 30 000 Kč

Registrovat

Počáteční
datum
Místo
konání
Forma Délka
kurzu
Jazyk Cena bez DPH
Na vyžádání E-learning 21 hodin en 18 000 Kč Registrovat
Na vyžádání Na vyžádání 14 hodin en 30 000 Kč Registrovat
G Garantovaný kurz

Nenašli jste vhodný termín?

Napište nám o vypsání alternativního termínu na míru.

Kontakt

Cílová skupina

Tato část není lokalizována

Researchers in psychology, education, social science, medicine, and business, or others analyzing data with multilevel nesting structure

Struktura kurzu

Tato část není lokalizována

Introduction to Multilevel Models

  • Nested data structures.
  • Ignoring dependence.
  • Methods for modeling dependent data structures.
  • The random-effects ANOVA model.

Basic Multilevel Models

  • Random-effects regression.
  • Centering predictors in multilevel models.
  • Model building.
  • A comment on notation (self-study).
  • Intercepts as outcomes.

Slopes as Outcomes and Model Evaluation

  • Slopes as outcomes.
  • Model assumptions.
  • Model assessment and diagnostics.
  • Maximum likelihood estimation.

The Analysis of Repeated Measures

  • The conceptualization of a growth curve.
  • The multilevel growth model.
  • Time-invariant predictors of growth (self-study).
  • Multiple groups models.

Three-Level and Cross-Classified Models

  • Three-level models.
  • Three-level models with random slopes.
  • Cross-classified models.

Multilevel Models for Discrete Dependent Variables

  • Discrete dependent variables.
  • Generalized linear models.
  • Multilevel generalized linear models.
  • Additional considerations.

Generalized Multilevel Linear Models for Longitudinal Data (Self-Study)

  • Complexities of longitudinal data structures.
  • The unconditional growth model for discrete dependent variables.
  • Conditional growth models for discrete dependent variables.

Předpokládané znalosti

Tato část není lokalizována

Before attending this course, you should:
  • Preferably, be familiar with the basic structure and concepts of SAS (for example, the DATA step and procedures).
  • Be familiar with concepts of linear models such as regression and ANOVA and with generalized linear models such as logistic regression.
  • Be familiar with linear mixed models to enhance understanding, although this is not necessary to benefit from the course.
  • Potřebujete poradit nebo upravit kurz na míru?

    onas

    produktová podpora

    Platební brána ComGate Logo MasterCard Logo Visa