Large language models for text generation

Kód kurzu: MLLLMTG

Tento kurz je určen pro všechny, kteří jsou fascinovaní schopnostmi velkých jazykových modelů a generativní umělé inteligence, a chtějí proniknout do této problematiky než jen na úrovni běžného uživatele. Společně se seznámíme s transformery, základním stavebním moderních jazykových modelů, představíme si nejznámější architektury a ukážeme si, jak se velké jazykové modely dají použít pro různé aplikace. K praktickým cvičením není nutný žádný placený účet třetích stran. Budeme používat open source modely, které jsou při správném způsobu použití stejně dobré jako ty největší komerční modely.

Odborní
certifikovaní lektoři

Mezinárodně
uznávané certifikace

Široká nabídka technických
a soft skills kurzů

Skvělý zákaznický
servis

Přizpůsobení kurzů
přesně na míru

Termíny kurzu

Počáteční datum: Na vyžádání

Forma: Prezenční/Virtuální

Délka kurzu: 1 den

Jazyk: en/cz

Cena bez DPH: 4 990 Kč

Registrovat

Počáteční
datum
Místo
konání
Forma Délka
kurzu
Jazyk Cena bez DPH
Na vyžádání Prezenční/Virtuální 1 den en/cz 4 990 Kč Registrovat
G Garantovaný kurz

Nenašli jste vhodný termín?

Napište nám o vypsání alternativního termínu na míru.

Kontakt

Struktura kurzu

  • Generativní umělá inteligence pro text a obrázky
  • Evoluce jazykového modelování
  • Transformery
  • Typy transformerů pro jazykové modelování (encoder, decoder, encoder-decoder)
  • Posilované učení s lidskou zpětnou vazbou (RLHF)
  • Vybrané modely pro jazykové modelování založené na transformerech (BERT, GPT, LLAMA, T5, BART…)
  • Praktický příklad na klasifikaci textů pomocí transformerů s využitím knihovny HuggingFace v prostředí Google Colab
  • Prompt engineering: in-context learning, zero shot, one shot and few shot prompting, nejdůležitější konfigurační parametry generativních procesů
  • Praktický příklad na in-context learning s využitím knihovny HuggingFace v prostředí Google Colab
  • Fine-tuning velkých jazykových modelů a parameter-efficient fine-tuning (LoRA)
  • Evaluace jazykových generativních modelů (ROUGE, BLEU)
  • Praktický příklad na využití parameter-efficient fine-tuning s využitím knihovny HuggingFace v prostředí Google Colab
  • Retrieval Augmented Generation (RAG)

Předpokládané znalosti

  • Základní znalost programování v Pythonu
  • Znalosti strojového učení na úrovni kurzu Úvod do strojového učení.

Potřebujete poradit nebo upravit kurz na míru?

onas

produktová podpora

Platební brána ComGate Logo MasterCard Logo Visa