Feature Engineering and Data Preparation for Analytics

Kód kurzu: DMDP42

Tato část není lokalizována

This course introduces programming techniques to craft and feature engineer meaningful inputs to improve predictive modeling performance. In addition, this course provides strategies to preemptively spot and avoid common pitfalls that compromise the integrity of the data being used to build a predictive model. This course relies heavily on SAS programming techniques to accomplish the desired objectives.

The self-study e-learning includes:

  • Annotatable course notes in PDF format.
  • Virtual Lab time to practice.

Odborní
certifikovaní lektoři

Mezinárodně
uznávané certifikace

Široká nabídka technických
a soft skills kurzů

Skvělý zákaznický
servis

Přizpůsobení kurzů
přesně na míru

Termíny kurzu

Počáteční datum: Na vyžádání

Forma: E-learning

Délka kurzu: 21 hodin

Jazyk: en

Cena bez DPH: 27 000 Kč

Registrovat

Počáteční datum: Na vyžádání

Forma: Na vyžádání

Délka kurzu: 21 hodin

Jazyk: en

Cena bez DPH: 45 000 Kč

Registrovat

Počáteční
datum
Místo
konání
Forma Délka
kurzu
Jazyk Cena bez DPH
Na vyžádání E-learning 21 hodin en 27 000 Kč Registrovat
Na vyžádání Na vyžádání 21 hodin en 45 000 Kč Registrovat
G Garantovaný kurz

Nenašli jste vhodný termín?

Napište nám o vypsání alternativního termínu na míru.

Kontakt

Cílová skupina

Tato část není lokalizována

Analysts, data scientists, and IT professionals looking to craft better inputs to improve predictive modeling performance

Struktura kurzu

Tato část není lokalizována

Extracting Relevant Data

  • Data difficulties.
  • Assessing available data.
  • Accessing available data.
  • Drawing a representative target sample.
  • Drawing an uncontaminated input sample.

Transforming Transaction and Event Data

  • Advantages and disadvantages of transactions data.
  • Common transaction structures.
  • Defining the time horizon.
  • Fixed and variable time horizon methods.
  • Implementing common transaction transformations.

Using Nonnumeric Data

  • Definitions and difficulties of nonnumeric data.
  • Miscoding and multicoding detection.
  • Controlling degrees of freedom.
  • Geocoding.

Managing Data Pathologies

  • Exploring input variable distributions.
  • Detecting data anomalies.
  • Creating custom exploratory tools for candidate input variables.
  • Missing value imputation.
  • Data partitioning.

Předpokládané znalosti

Tato část není lokalizována

This course assumes some experience in both predictive modeling and SAS programming. Before attending this course, you should have:
  • Exposure to DATA step programming equivalent to the SAS Programming 1: Essentials course.
  • Exposure to programming in SQL or the SQL procedure.
  • Exposure to querying data in PROC SQL and building and deploying a predictive model.
  • Familiarity with the analytical process of building predictive models and scoring new data.
  • Potřebujete poradit nebo upravit kurz na míru?

    onas

    produktová podpora

    Platební brána ComGate Logo MasterCard Logo Visa