Data Science and Big Data Analytics

Kód kurzu: DSADA

Tato část není lokalizována

In this course, you will gain practical foundation level training that enables immediate and effective participation in big data and other analytics projects. You will cover basic and advanced analytic methods and big data analytics technology and tools, including MapReduce and Hadoop. The extensive labs throughout the course provide you with the opportunity to apply these methods and tools to real world business challenges. This course takes a technology-neutral approach. In a final lab, you will address a big data analytics challenge by applying the concepts taught in the course to the context of the Data Analytics Lifecycle. You will prepare for the Proven Professional Data Scientist Associate (EMCDSA) certification exam, and establish a baseline of Data Science skills.

Key Features

  •  Session by Certified Instructor
  • Advanced hands-on labs
  • Official training content
  • Industry-recognized certification
  • Interactive sessions
56 078 Kč

67 854 Kč s DPH

Nejbližší termín od 03.02.2025

Výběr termínů

Odborní
certifikovaní lektoři

Mezinárodně
uznávané certifikace

Široká nabídka technických
a soft skills kurzů

Skvělý zákaznický
servis

Přizpůsobení kurzů
přesně na míru

Termíny kurzu

Počáteční datum: 03.02.2025

Forma: Virtuální

Délka kurzu: 5 dnů

Jazyk: en

Cena bez DPH: 56 078 Kč

Registrovat

Počáteční datum: Na vyžádání

Forma: Virtuální

Délka kurzu: 5 dnů

Jazyk: en

Cena bez DPH: 56 078 Kč

Registrovat

Počáteční
datum
Místo
konání
Forma Délka
kurzu
Jazyk Cena bez DPH
03.02.2025 Virtuální 5 dnů en 56 078 Kč Registrovat
Na vyžádání Virtuální 5 dnů en 56 078 Kč Registrovat
G Garantovaný kurz

Nenašli jste vhodný termín?

Napište nám o vypsání alternativního termínu na míru.

Kontakt

Cílová skupina

Tato část není lokalizována

  • Managers of teams of business intelligence, analytics, and big data professionals
  • Current business and data analysts looking to add big data analytics to their skills
  • Data and database professionals looking to exploit their analytic skills in a big data environment
  • Recent college graduates and graduate students with academic experience in a related discipline looking to move into the world of Data Science and big data
  • Individuals looking to take the EMC Proven Professional Data Scientist Associate (EMCDSA) certification

Skills Gained

  • Deploy the Data Analytics Lifecycle to address big data analytics projects
  • Reframe a business challenge as an analytics challenge
  • Apply appropriate analytic techniques and tools to analyze big data, create statistical models, and identify insights that can lead to actionable results
  • Select appropriate data visualizations to clearly communicate analytic insights to business sponsors and analytic audiences
  • Use R and RStudio, MapReduce/Hadoop, in-database analytics, Windows, and MADlib functions
  • Use advanced analytics create competitive advantage
  • Data scientist role and skills vs. traditional business intelligence analyst

Struktura kurzu

Tato část není lokalizována

1. Big Data Analytics

  • Big Data
  • State of the Practice in Analytics
  • Data Scientist
  • Big Data Analytics in Industry Verticals

2. Data Analytics Lifecycle

  • Discovery
  • Data Preparation
  • Model Planning
  • Model Building
  • Communicating Results
  • Operationalizing

3. Basic Data Analytic Methods Using R

  • Using R to Look at Data
  • Analyzing and Exploring the Data
  • Statistics for Model Building and Evaluation

4. Advanced Analytics: Theory and Methods

  • K Means Clustering
  • Association Rules
  • Linear Regression
  • Logistic Regression
  • Nave Bayesian Classifier
  • Decision Trees
  • Time Series Analysis
  • Text Analysis

5. Advanced Analytics: Technologies and Tools

  • Analytics for Unstructured Data
    • MapReduce and Hadoop
    • Hadoop Ecosystem
  • In-Database Analytics: SQL Essentials
    • Advanced SQL and MADlib for In-Database Analytics

6. Putting it All Together

  • Operationalizing an Analytics Project
  • Creating the Final Deliverables
  • Data Visualization Techniques
  • Final Lab Exercise on Big Data Analytics

Předpokládané znalosti

Tato část není lokalizována

  • A strong quantitative background with a solid understanding of basic statistics, as would be found in a statistics 101 level course
  • Experience with a scripting language, such as Java, Perl, or Python (or R)
  • Experience with SQL

Potřebujete poradit nebo upravit kurz na míru?

onas

produktová podpora

Platební brána ComGate Logo MasterCard Logo Visa