Applied Analytics Using SAS(R) Enterprise Miner(TM)

Kód kurzu: AAEM51

Tato část není lokalizována

This course covers the skills that are required to assemble analysis flow diagrams using the rich tool set of SAS Enterprise Miner for both pattern discovery (segmentation, association, and sequence analyses) and predictive modeling (decision tree, regression, and neural network models). This course is appropriate for SAS Enterprise Miner 5.3 up to the current release.

Odborní
certifikovaní lektoři

Mezinárodně
uznávané certifikace

Široká nabídka technických
a soft skills kurzů

Skvělý zákaznický
servis

Přizpůsobení kurzů
přesně na míru

Termíny kurzu

Počáteční datum: Na vyžádání

Forma: E-learning

Délka kurzu: 21 hodin

Jazyk: en

Cena bez DPH: 27 000 Kč

Registrovat

Počáteční datum: Na vyžádání

Forma: Na vyžádání

Délka kurzu: 21 hodin

Jazyk: en

Cena bez DPH: 45 000 Kč

Registrovat

Počáteční
datum
Místo
konání
Forma Délka
kurzu
Jazyk Cena bez DPH
Na vyžádání E-learning 21 hodin en 27 000 Kč Registrovat
Na vyžádání Na vyžádání 21 hodin en 45 000 Kč Registrovat
G Garantovaný kurz

Nenašli jste vhodný termín?

Napište nám o vypsání alternativního termínu na míru.

Kontakt

Cílová skupina

Tato část není lokalizována

Data analysts, qualitative experts, and others who want an introduction to SAS Enterprise Miner

Struktura kurzu

Tato část není lokalizována

Introduction

  • Introduction to SAS Enterprise Miner.

Accessing and Assaying Prepared Data

  • Creating a SAS Enterprise Miner project, library, and diagram.
  • Defining a data source.
  • Exploring a data source.

Introduction to Predictive Modeling: Predictive Modeling Fundamentals and Decision Trees

  • Introduction.
  • Cultivating decision trees.
  • Optimizing the complexity of decision trees.
  • Understanding additional diagnostic tools (self-study).
  • Autonomous tree growth options (self-study).

Introduction to Predictive Modeling: Regressions

  • Selecting regression inputs.
  • Optimizing regression complexity.
  • Interpreting regression models.
  • Transforming inputs.
  • Categorical inputs.
  • Polynomial regressions (self-study).

Introduction to Predictive Modeling: Neural Networks and Other Modeling Tools

  • Input selection.
  • Stopped training.
  • Other modeling tools (self-study).

Model Assessment

  • Model fit statistics.
  • Statistical graphics.
  • Adjusting for separate sampling.
  • Profit matrices.

Model Implementation

  • Internally scored data sets.
  • Score code modules.

Introduction to Pattern Discovery

  • Cluster analysis.
  • Market basket analysis (self-study).

Special Topics

  • Ensemble models.
  • Variable selection.
  • Categorical input consolidation.
  • Surrogate models.
  • SAS Rapid Predictive Modeler.

Case Studies

  • Banking segmentation case study.
  • Website usage associations case study.
  • Credit risk case study.
  • Enrollment management case study.

Předpokládané znalosti

Tato část není lokalizována

Before attending this course, you should be acquainted with Microsoft Windows and Windows software. In addition, you should have at least an introductory-level familiarity with basic statistics and regression modeling. Previous SAS software experience is helpful but not required.

Potřebujete poradit nebo upravit kurz na míru?

onas

produktová podpora

Platební brána ComGate Logo MasterCard Logo Visa